MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior.

نویسندگان

  • Francesca Balzano
  • Sara Cruciani
  • Valentina Basoli
  • Sara Santaniello
  • Federica Facchin
  • Carlo Ventura
  • Margherita Maioli
چکیده

In this review, we described different factors that modulate pluripotency in stem cells, in particular we aimed at following the steps of two large families of miRNAs: the miR-200 family and the miR-302 family. We analyzed some factors tuning stem cells behavior as TGF-β, which plays a pivotal role in pluripotency inhibition together with specific miRNAs, reactive oxygen species (ROS), but also hypoxia, and physical stimuli, such as ad hoc conveyed electromagnetic fields. TGF-β plays a crucial role in the suppression of pluripotency thus influencing the achievement of a specific phenotype. ROS concentration can modulate TGF-β activation that in turns down regulates miR-200 and miR-302. These two miRNAs are usually requested to maintain pluripotency, while they are down-regulated during the acquirement of a specific cellular phenotype. Moreover, also physical stimuli, such as extremely-low frequency electromagnetic fields or high-frequency electromagnetic fields conveyed with a radioelectric asymmetric conveyer (REAC), and hypoxia can deeply influence stem cell behavior by inducing the appearance of specific phenotypes, as well as a direct reprogramming of somatic cells. Unraveling the molecular mechanisms underlying the complex interplay between externally applied stimuli and epigenetic events could disclose novel target molecules to commit stem cell fate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter.

MicroRNAs (miRNAs) play a central role in the regulation of multiple biological processes including the maintenance of stem cell self-renewal and pluripotency. Recently, the miRNA cluster miR302-367 was shown to be differentially expressed in embryonic stem cells (ESCs). Unfortunately, very little is known about the genomic structure of miRNA-encoding genes and their transcriptional units. Here...

متن کامل

Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.

Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a ...

متن کامل

GCNF-dependent activation of cyclin D1 expression via repression of Mir302a during ESC differentiation.

Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation ...

متن کامل

Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes.

The mechanisms underlying the development of complications in type 1 diabetes (T1D) are poorly understood. Disease modeling of induced pluripotent stem cells (iPSCs) from patients with longstanding T1D (disease duration ≥ 50 years) with severe (Medalist +C) or absent to mild complications (Medalist -C) revealed impaired growth, reprogramming, and differentiation in Medalist +C. Genomics and pro...

متن کامل

Toward decoding the principles of cancer metastasis circuits.

Understanding epithelial-mesenchymal transitions (EMT) during cancer metastasis remains a major challenge in modern biology. Recent observations of cell behavior together with progress in mapping the underlying regulatory genetic networks led to new understandings of carcinoma metastasis. It is now established that the genetic network that regulates the EMT also enables an epithelial-mesenchyma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2018